Magnet Challenges - Technology & Affordability

- Technical Requirements
- Conceptual Approaches
- Magnet R&D status in the U.S.
- Heat Load Issues
- Comments on costs

Center of mass energy, E_{COM} **Additional Description** 0.1 to 3 TeV MC Collab. status report extrapolation extrapolation evolutionary 10 TeV evolutionary H0H 100 TeV ultra-cold 100 TeV beam etc.

frac. CoME spread, o _E /E[10-3]	# of 100 GeV SM Higgs/det/year	# of μμ -> ee [events/year]	integrated L[fb-1/yr]	luminosity, L[cm ⁻² .s ⁻¹] $8x10^{30} \sim 5x10^{34}$ 1.0x10 ³⁶	collider physics par ameters:
$0.02 \sim 1.1$	$4000 \sim 6 \times 10^5$	$650 \sim 10000$	$0.08 \sim 540$	$8x10^{30} \sim 5x10^{34}$	
0.42	1.4×10^{7}	8700	10 000	1.0×10^{36}	HOH
0.08	2.1×10^{7}	(1) 87	10 000	$1.0 \text{x} 10^{36}$	
0.07	2.1×10^9	8700	1.0×10^{6}	1.0×10^{38}	HOH

collider ring parameters:

ave. bending B field [T]	circumference, C[km]
$3.0 \sim 5.2$	$0.35 \sim 6.0$
7.0	15
10.5	100
10.5	100

Center, Fixed Cradle

Common Coil Design The Original Concept

Minimum requirements on big Lower cost magnets expected Block design (for large)Loren(z Compact (compared aperiure D20 magne yokesize for two apentures Simple 2-d geometry due to simple & modular design expensive tooling and labor Efficient and methodical R&D orces at high fields) bend radius (no complex 3-d ends) ncluding/H/TS tapes/andicab នៅម៉ាងប្រទ

Innovative Magnet Designs for Future Colliders

Superconducting Magnet Program

BERKELEY

DOE Program Review of HEP March 3-4, 1999

BNL Common Coils

- HTS coil (30 cm)
- tape
- Nb₃Sn coils (1 m)
- tape
- NbTi coil (1 m)
- background field
- SSC cable

BERKELEY LAB

FNAL High Field, Cosθ

- Use lessons learned in previous cos θ magnets (mostly NbTi)
- Brittle materials:
- wind & react vs react
 & wind
- coil impregnation

Heat Loads

but results in factor 5 loss in L (2T v's 10T	 Low Field - Transmission line magnet could solve heat load 	 HTS might help somewhat 	 Heat load also results in high ∆t 	100 Tev ~80 mm 190 mm 900 kW	10 Tev ~60 mm 150 mm 135 kW	4 Tev 54 mm 140 mm 50 kW	0.1 Tev 28 mm 86 mm 3 kW	(diameter) (at 4K)
0T)	ld solve heat			600 MW	100 MW	35 MW	2 W W	(wall plug)
	r load			×	•	0.K.	0.K.	

Transmission Line Magnet

Percent of Total Cost CONDICIONOSIAN. NOV. LABOR NOSIANO **Magnet Cost Distribution** □ LHC(E) □ Gen SSC TeV

BERKELEY LAB

Cost Components of Production Dipole Magnets Cost per magnet = \$109,366

Cost vs. Length Relative to RHIC Production Dipole Cost for Several Coil Apertures

Ratio of Cost per Tesla-Meter for Dipoles with Wider Cable and Second Coil, Relative to RHIC Dipoles

Field Attainable, Relative to RHIC Dipoles, With Wider Cable and Second Coil

RHIC Project Cost Components

Affordability

- RHIC Dipoles 8cm, 10m, 4T, FY95 cost \$110K each
- HEMC Dipole
- 8cm -> 15cm 50%
- 4T-> 7T
- 50%
- 40%
- FY95 -> FY00

10m -> 15m

- 15%
- Estimate HEMC Dipole \$400K or \$26K/m based on RHIC
- 10 Tev needs 15km circumference -> magnet costs more complex than RHIC) (probably a lower bound since HEMC dipoles are ~\$400M. Ring costs = dipoles \times 3(or4) = \$1.2(6)B

Sticker Shock

LHC costs 2.4B sf. ~ \$1.5B (European estimate)

LHC costs estimate) 10 years of CERN @ \$300M per) + \$1.5B contingency + \$1.5B indirect = \$7.5B (U.S. \$1.5B materials + \$3.0B labour (

- Example SNS \$1.3B
- 1 Gev Linac
- 1 Gev storage ring
- 2-4 MW target

Conclusions

- challenging but possible A 10 Tev machine based on Nb-Ti magnets (7T dipole) is
- cosine theta dipoles A 100 Tev machine does not look feasible based on 10T
- A different magnet design (no mid plane cryogenics) would
- assuming that costs are reasonable and they work Newer technologies (Nb3Sn, HTS) would be beneficial
- cost reductions appears to preclude a 'cheap' solution Demanding technical environment + no obvious significant